
 CRITICAL APPRAISAL FOR EMERGENCY MEDICINE TRAINEES 
 
MODULE 1. CONCEPTS AND DEFINITIONS 
 
What is a hypothesis? 
A hypothesis is a prediction. Having made a prediction, observation or 
experimentation is then used to determine whether the prediction is true. 
 
Validity and generalisability? 
Critical appraisal involves determining whether the findings of a research study are 
valid and generalisable. If the findings are likely to be true, then they are valid. If the 
findings are likely to apply to settings or situations outside the research study, then 
they are generalisable. 
 
Validity = is this finding true? 
Generalisability = is this finding applicable elsewhere? 
 
There is little point trying to generalise a finding that is not valid. So validity should 
be considered before generalisability.  
 
There is often a trade-off between validity and generalisability. Tight experimental 
control may produce valid results that are difficult to generalise. Broadening criteria 
to enhance generalisability can risk validity if experimental control is lost. 
 
For example, a double-blind placebo-controlled trial in a centre of excellence, with 
patients who agree to (and attend) rigorous follow-up, is likely to produce valid 
findings, but they may not be generalisable. A multicentre observational study of 
unselected patients in a routine hospital setting will produce generalisable findings, 
but validity may be compromised. 
 
Chance, bias and confounding 
There are three reasons why the findings of a research study may not be valid: 

1. The results may have been affected by chance (i.e. due to a random error) 
2. The results may have been affected by bias (i.e. a systematic error) 
3. The results may have been misinterpreted, and ascribed to one factor, when 

another factor (a confounder) was actually responsible. 
 
1. Chance 
Random errors (chance) reflect the observation that most systems, be they human 
bodies or emergency departments, are subject to variation. Some people are healthier 
than others and some emergency departments have better staffing. Any measurement 
of these systems may be influenced by the play of chance. For example, it may just be 
bad luck that an emergency department has long waiting times on the day that we 
measure them. 
 
The probability of a random error is estimated using statistics (p values and 
confidence intervals). The impact of random error depends upon how much variation 
there is in the population studied and the number of observations used to estimate the 
measurement (the sample size). 
 



Random error will determine the precision of the results. The greater the sample size, 
the less the overall estimate will be affected by random error, and the more precise the 
estimate will be. 
 
2. Bias 
Bias reflects a systematic error in the methods used in the research. For example in 
the way the study sample was selected or the measurements were made. Many forms 
of bias have been described: selection bias, measurement bias, analysis bias etc. The 
important thing is to understand how any bias may occur and how it may affect the 
results rather than being able to name or classify it. 
 
If a measurement is subject to bias it will be inaccurate. 
 
Chance  = Random error, which leads to imprecision 
Bias = Systematic error, which leads to inaccuracy 
 
3. Confounding 
Confounding is an error of interpretation. The results of the study may be precise and 
accurate, but they are misinterpreted and a false conclusion is drawn. 
 
Confounding may happen when we look for an association between a factor and an 
outcome (for example, between drinking coffee and developing lung cancer). 
Confounding describes the situation where the apparent association between a factor 
and an outcome is actually mediated by another unmeasured factor (the confounder). 
For example, we may observe that people who drink coffee are more likely to develop 
lung cancer than those who don’t. However, this apparent association would probably 
be confounded by smoking: smokers being more likely to drink coffee and to develop 
lung cancer. 
 
If a confounder is known, it can be taken into account during analysis. Common 
confounders include age, gender, smoking, socio-economic status, and previous 
morbidity. These should always be considered in analysis of non-randomised data. 
 
Unknown confounders cannot be taken into account during analysis. However, 
randomisation ensures known and unknown confounders are randomly distributed 
between groups in a study. 
 
Accuracy and precision 
Accuracy and precision both describe how close an estimate is to the true value. An 
inaccurate estimate will differ from the true value because bias has led to a systematic 
error in the estimate. An imprecise estimate will differ from the true value because 
random variation has led to a random error in the estimate. 
 
Statistical techniques, such as confidence intervals, can give you an idea of the 
precision of an estimate. Wide confidence intervals indicate an imprecise estimate. 
Narrow confidence intervals indicate a precise estimate. 
 
You can only determine whether an estimate is accurate or not by looking at the 
methods used in the study and deciding whether these methods may have led to bias. 
 



Efficacy and effectiveness 
Efficacy and effectiveness are not the same. A study of efficacy determines whether a 
treatment can work under ideal conditions. A study of effectiveness shows whether a 
treatment does work under normal conditions. 
 
Pragmatic and explanatory research 
When appraising a study it is important to identify what sort of research question is 
being asked. The methods need to be appropriate for the question. We can only 
determine whether the methods are appropriate if we know what sort of question is 
being asked. Research questions in emergency care can be broadly characterised as 
either pragmatic or explanatory. 
 
Pragmatic research simply asks whether a treatment works, or how useful a test is, in 
routine practice. It does not attempt to determine whether the treatment could work 
under certain circumstances or to determine how or why a treatment works. It simply 
attempts to answer pragmatic questions, like “should we use this treatment?” 
 
Pragmatic research should use routine staff and settings, unselected populations, 
research methods that do not interfere with clinical practice, and should measure 
outcomes that are directly relevant to patients, such as mortality or quality of life. 
 
Explanatory research explores how or why a treatment works, or whether it works 
under specific (usually ideal) circumstances. Explanatory research may use specific 
staff or settings, selected populations, and may measure clinical outcomes, such as 
PFR, blood pressure or radiological appearance. The research methods may interfere 
with clinical care or produce care that is highly structured and protocol-driven. 
 
Two apparently similar research questions may require different methods, depending 
upon whether they are pragmatic or explanatory. For example: 
 
Pragmatic: Should non-invasive ventilation be routine treatment for patients 
presenting with acute cardiogenic pulmonary oedema? 
This question would require a multicentre randomised trial involving a variety of 
hospitals. All patients who appear to have cardiogenic pulmonary oedema on the basis 
of routine testing should be recruited and randomised. Regular staff should provide 
the treatment according to simple protocols that allow plenty of scope for physician 
judgement. Some patients might not receive the “appropriate” treatment, but all would 
be analysed as if they had. Outcomes would be mortality and quality of life. 
 
Explanatory: Can non-invasive ventilation improve outcomes for patients with acute 
cardiogenic pulmonary oedema? 
This question could be performed in a single centre, perhaps a specialist hospital with 
an interest in this topic. Patients could be selected if they appear suitable for non-
invasive ventilation. Patients may receive additional testing, such as 
echocardiography, to confirm the diagnosis before they are recruited. Specialist staff 
with additional training would provide the treatment according to strict protocols. 
Outcomes would include physiological measures, such as change arterial blood gases 
or oxygen saturation. 
 
 



MODULE 2. STATISTICS 
 
Statistics can be used to estimate the potential effect of random error upon the results 
of a study. There are broadly two approaches, depending upon the way the research 
question is asked: 

1. Hypothesis testing – the P-value 
2. Estimation – the confidence interval 

 
There is no reason why both approaches cannot be used in the same analysis. Indeed 
they often complement each other. However, a number of journals, including the BMJ 
and Annals of Emergency Medicine, prefer confidence intervals to be reported rather 
than P-values. 
 
Hypothesis testing (the P-value) 
The research question is phrased in the form of a hypothesis and the data are collected 
to determine whether the hypothesis is true. For example, if we were evaluating the 
effectiveness of drug A compared to placebo we would ask: Is drug A more effective 
than placebo? The study would compare the effect of drug A to placebo and 
determine the probability that this effect is due to chance. 
 
The objectives should state a hypothesis. The opposite of the hypothesis (i.e. that the 
stated hypothesis is false), is known as the null hypothesis. So the null hypothesis 
might be that there is no difference between active treatment and placebo, or that 
there is no difference between our sample and the rest of the population. 
 
The p value can be expressed in two different ways, depending upon how 
precise/pedantic you wish to be with your definition: 

1. Put simply, the p-value is the probability that the null hypothesis is true. This 
makes sense and is easy to understand. The smaller the p value is, the less 
likely the null hypothesis is to be true, therefore the more likely we are to 
reject the null hypothesis and accept out alternative hypothesis. 

2. Strictly speaking the null hypothesis must be either true or false. It cannot be 
“probably true” and whether it is true or not cannot be changed by the findings 
of a research study. Therefore, a more precise definition is that the p value is 
the probability of observing results at least as extreme as those we have, given 
that the null hypothesis is true. The smaller the p value, the more unlikely it is 
that we would observe these results given the null hypothesis being true. 
Hence the more likely we are to reject the null hypothesis. 

 
Don’t worry if you don’t understand the more complicated definition, it’s perfectly 
possible to survive statistics without making any mistakes by using the simple 
definition. 
 
Estimation (confidence intervals) 
The research question is phrased as a measurement and the data are collected to 
provide an estimate of the measurement. For example, evaluating the effectiveness of 
drug A compared to placebo would involve asking: What is the effectiveness of drug 
A compared to placebo? The study would estimate the relative or absolute risk 
reduction and use confidence intervals to indicate uncertainty around this estimate. 
 



The 95% confidence interval is a range of values around an estimate that have a 95% 
probability of encompassing the “true” value of that estimate. Put simply, the true 
value probably lies within the confidence interval. Confidence intervals will tell you 
how precise an estimate is. The wider the confidence interval, the less precise the 
estimate is. 
 
Confidence intervals or p-values? 
The hypothesis testing and estimation approaches both have advantages and 
disadvantages: 

1. Hypothesis testing should require the researcher to decide before the study 
what difference they consider to be statistically significant (although this is 
often not the case). It therefore has the advantage of requiring a definition of 
“success” against which the treatment or test may be judged. 

2. Both P-values and confidence intervals can tell you whether a result is 
statistically significant: the p-value if it is less than 0.05, the confidence 
interval if it does not cross the value for no effect (e.g. a relative risk reduction 
of 1). 

3. Confidence intervals provide information about clinical significance, 
regardless of whether the result is statistically significant or not. P-values do 
not. 

4. Confidence intervals can be used to estimate the likelihood of a type II 
statistical error (see below) 

5. Too many p-values in an article suggest the possibility of multiple hypothesis 
testing and type I statistical errors (see below) 

 
The list above suggests that confidence intervals have rather more advantages than p-
values. At a very simplistic level it is reasonable to interpret this as “confidence 
intervals = good, p-values = bad”. 
 
Type I and type II statistical errors 
The table below shows how type I and type II statistical errors are defined. 

 
 Alternative hypothesis is 

true 
Null hypothesis is true 

Experiment shows 
significant result 

True positive 
No error 

False positive 
Type I error 

Experiment shows no 
significant result 

False negative 
Type II error 

True negative 
No error 

 
The probability of producing a type I or type II statistical error depends upon the 
sample size and the level at which statistical significance is set. 
 
The level of statistical significance is the p value below which we consider the results 
to be so improbable, given the null hypothesis, that we will reject the null hypothesis 
and accept our alternative. By convention it is normally set at 0.05. 
 
The level at which statistical significance is set is called alpha. The p value is the 
probability that a significant (i.e. positive) result is actually a false positive. The value 
at which we set alpha is therefore the maximum probability of a false positive that we 
are prepared to accept. 



 
Having set alpha to determine what probability of a false positive result we are 
prepared to accept, the probability of a false negative result (defined as beta) is 
determined by the sample size. The larger the sample size, the smaller beta will be. 
 
The power of a study is defined as 1-beta. By convention, a study should aim to 
recruit a sufficient sample size for the power to be 80 or 90%. 
 
Study power is determined by- 1) The level at which alpha is set, 2) The sample size, 
3) The variability of the outcome measure, as defined by its standard deviation, and 4) 
The minimum clinically significant difference we wish to detect. 
 
Since 1) is typically set by convention and 3) is beyond our control, researchers 
should adjust the sample size to detect the minimum clinically significant difference. 
In the real world, they may be tempted to adjust the minimum clinically significant 
difference to fit the sample size they think they can achieve. 
 
Type I (false-positive) errors 
For any individual test, the probability of a false positive result is reflected in the p 
value. However, if more than one test has been performed this is no longer true. With 
alpha set at 0.05 the probability of obtaining a false positive result if there is no true 
difference is 1-(0.95 x 0.95) for two tests, 1-(0.95 x 0.95 x 0.95) for three tests, etc. If 
you do enough tests you will ultimately get a positive result even if there is no true 
difference. 
 
Therefore, isolated positive results among a series of tests should be viewed with 
suspicion, particularly if there is no scientific rationale why that test should be 
positive and not the others, or why that test has been done, and not any others. 
 
For example, if the authors report a significant result in blue-eyed women in the 30-40 
age group, it is reasonable to assume that this was one of many (presumably non-
significant) results in all other age groups and eye colours, and therefore likely to be a 
chance finding. Unless the authors can convince you that there is a scientific rationale 
for studying this subgroup in more detail. 
 
Multiple hypothesis testing is a common flaw in poorly planned studies. If researchers 
collect their data without any clear objective and then analyse the data to look for any 
statistically significant results, they will almost certainly find some – and they will 
almost certainly be meaningless, false positive results. 
 
Multiple hypothesis testing is easy to spot when all the authors report all the 
hypothesis tests they have performed. However, they will often only report the 
positive (significant) results. It is worth asking the following questions about any 
positive result, particularly from observational data, to identify the possibility of 
multiple hypothesis testing: 

1. Is there a clear rationale for the hypothesis tests? This should be explained in 
the background. 

2. Does the hypothesis test flow from the study objectives or does it only appear 
in the results? 



3. Does the methods section include a plan for analysis that sets out what tests 
will be performed, does it include the positive test, and does it follow from the 
objectives? 

4. Do the reported hypothesis tests suggest other, more obvious, associations that 
should be explored, but have not been reported? For example, it is slightly 
suspicious if a significant p-value has been reported for an association 
between educational status and outcome has been reported, but no association 
between age or gender and outcome have been explored. 

 
Type II (false-negative) errors 
If a study produces a negative result it is worth asking the following questions to 
identify whether it could be a type II (false negative) error: 

1) Look for confidence intervals. If they are wide this suggests that estimates are 
imprecise and a false negative result more likely. 

2) Look at the extreme ends of the confidence intervals. If important differences 
are possible within the confidence intervals then this study has not ruled out 
the possibility of an important effect, even though the study is negative. 

3) Look at the power calculation. Were sensible values for alpha and beta used, 
and what was the minimum clinically significant difference. Is this really the 
smallest difference that would be worthwhile detecting? Has it been justified? 

 
 



MODULE 3. EVALUATION OF A THERAPY 
 
Evaluation of a therapy involves comparing a group of patients receiving the therapy 
to a group of patients who do not receive it (the control group). With a few rare 
exceptions (such as diseases that currently have 100% mortality) a control group is 
always required to demonstrate that any improvement observed after treatment is not 
simply due to the natural course of the illness. 
 
There are a number of key elements of the design of these studies that will determine 
whether the findings are valid and generalisable. 
 
Selection and allocation of study participants 
Patients are selected to a trial by a process of recruitment that usually involves 
identification, assessment of eligibility, and then request for consent to participate. 
Selection processes can occur at any of these stages to influence the constitution of 
the study population. 
 
Selection of patients for a trial will affect generalisability. If most eligible patients are 
identified and recruited then the results will be generalisable to the wider population. 
If recruitment is highly selective then findings may not be generalisable. 
 
Once patients have been selected into a trial, they are then allocated to a treatment or 
to control. Bias may result if patients, carers or researchers can influence allocation. 
For example, patients may choose a treatment that they think will be beneficial. This 
will result in certain types of patient being allocated to certain treatments, leading to 
bias. The more that patients, carers and researchers can influence allocation to 
treatment group, the greater bias is likely to arise. This bias may be known as 
allocation bias or selection bias. 
 
Randomisation 
Randomisation is a technique used to ensure that allocation to treatment group is 
completely removed from any influence by carers, patients or researchers. Patients are 
allocated to treatment group by a random process, such as tossing a coin. By making 
allocation to treatment group a random process, those involved in the trial will not be 
able to predict allocation, and thereby control it. 
 
However, simply using randomisation does not eliminate allocation bias. If those 
involved in the trial know the randomisation schedule in advance they can select 
patients with a more favourable prognosis to one treatment group by controlling 
recruitment into the trial (even though they do not control allocation to treatment 
group). For example, we could randomise patients by randomly allocating days of the 
week, so that on some (random) days they receive the intervention and on others they 
receive control. However, if patients, carers or researchers know which treatment is 
being provided on that day, then they could choose to participate in the trial only if 
the treatment they want is being offered. 
 
Allocation concealment  
Allocation concealment ensures that a randomised trial will genuinely remove any 
influence over the allocation process. All those involved in the trial should be unable 



to predict the allocation of the next participant in the trial until that participant is 
irreversibly enrolled in the trial. 
 
The ideal method to achieve allocation concealment is the telephone randomisation 
hotline. The randomisation sequence is held at a separate location that must be 
telephoned whenever a patient is recruited. The allocated treatment group is only 
revealed when all the patient’s details have been recorded and they are irreversibly 
entered into the trial. 
 
Consecutive, sealed, opaque envelopes can also be used to achieve allocation 
concealment, but all the envelopes must be accounted for at the end of the trial and 
regular checks must be made for tampering. It is surprising how far people will go to 
subvert the randomisation process! 
 
Allocation concealment is the key to avoiding bias. Randomisation alone is not 
sufficient. In fact, if allocation concealment is in place then randomisation schedule 
does not have to be completely random. Block-randomisation, in which the 
randomisation sequence if split into blocks with equal (or fixed) numbers of 
treatments and controls, can be used to ensure equal numbers of treatment and 
controls. However it is important that the sequence should not be predictable, because 
this would mean that allocation would no longer be concealed.  
 
Allocation concealment ensures that those involved in the trial are unaware of the 
allocated group until the patient is irreversibly entered into the trial. Blinding refers to 
subsequent concealment of the treatment group from those involved in the trial. A 
triple-blind, placebo-controlled trial will effectively achieve allocation concealment 
because (if blinding is effective) patients, carers and researchers will be unaware of 
group allocation throughout the trial. 
 
Blinding 
Blinding tackles a different form of bias from allocation concealment. It is concerned 
with ensuring that the measurement of outcomes is free from bias. If any of the 
following individuals are aware of the treatment received they may alter their 
interpretation of the outcomes measured: patients, carers providing the treatment 
studied, carers providing subsequent care, those measuring outcomes, and those 
analysing outcomes. “Double blind” does not really cover the issue! If a study is 
described as blinded you need to identify exactly who was blinded.  
 
The most important person to be blinded is the person measuring the outcomes. If 
they are aware of treatment group then results will be subject to measurement bias. 
Blinding of patients and carers helps to combat the placebo effect (the beneficial 
effect of simply receiving treatment or just attention). Whether patients or carers 
should be blind depends upon the type of research question. For a pragmatic trial we 
may simply wish to know whether treatment makes people feel better, so we are not 
interested in whether it is due to a placebo effect or not. For an explanatory trial we 
will want to know how and why the treatment is effective, so we will want to 
eliminate any placebo effect. 
 
In drug trials it may be possible to ensure that everyone concerned is blinded. In trials 
of surgery and other physical interventions this is clearly important. However, bias 



may still be minimised by ensuring that those who can be blinded are blinded. In 
particular, those responsible for measuring outcomes should be blind, even if carers 
and patients are not. 
 
Blinding and outcomes 
The potential for lack of blinding to lead to bias will depend upon the outcome being 
measured. “Soft” outcomes, such as patient satisfaction, quality of life, range of 
movement, or pain, have a strong subjective element. This does not mean that they are 
not important, but it does make them susceptible to bias if blinding is inadequate. 
“Hard” outcomes, such as death, are less subject to bias due to lack of blinding. 
 
Intention to treat analysis (analyse as you randomise)  
The main analysis should always be done on an intention-to-treat basis, and the 
overall conclusion should be based on this analysis. Intention-to-treat analysis means 
that patients are analysed in the group to which they were originally randomised, 
regardless of whether they actually received the treatment they were allocated to. It 
ensures that the protection from bias created by allocation concealment is maintained.  
 
If patients are allowed to leave the group to which they were analysed this will 
introduce bias. Patients who withdraw, do not attend follow up, fail to comply, or 
have to change treatment because of adverse events will be different from those who 
complete their treatment as allocated. Therefore all patients should be analysed in the 
group they were originally allocated to, regardless of the treatment they ultimately 
received. 
 
Follow-up 
Ideally all patients recruited into a trial should be followed-up and outcome data 
reported. However, this is often difficult, particularly if follow-up is prolonged and 
patients are mobile. If patients are lost to follow up then the researchers will have to 
make some sort of assumption (usually implicit) about whether those lost to follow-up 
are typical of the study population. 
 
It is usually assumed that those who are lost to follow up are essentially similar to 
those followed up and do not differ between treatment groups. Therefore their loss 
from analysis can be accepted. If losses to follow-up are considerable (greater than 
30%, for example) or differ markedly between treatment groups, this assumption is 
unlikely to hold, and significant bias is a reasonable possibility. 
 
Outcome measures 
There is no perfect outcome measure. “Hard” outcome measures (death, MI) may be 
resistant to bias from lack of blinding and considered “important”, but are often rare 
and subject to type II (false negative) statistical errors. Clinical outcomes (blood 
pressure, PFR) may be sensitive to change and possible to record with adequate 
blinding, but lack relevance to the patient. Patient-centred outcomes (satisfaction, 
quality of life, pain) are important and relevant, but often subject to bias due to 
inadequate blinding. Therefore trials should ideally measure a range of different 
outcomes to address difference objectives. 
 



Measures of effectiveness 
Rather than simply report whether a treatment is effective (i.e. is the difference in 
outcome between the treatment groups statistically significant) the article should 
report how effective the treatment is and provide a confidence interval for this 
estimate. This allows the reader to decide whether the treatment effect is clinically 
important. 
 
The relative risk reduction (RRR) is the difference between the intervention and 
control groups in the proportion of patients with the outcome (e.g. death) divided by 
the proportion with the outcome in the control group. 
 
So if 20/100 patients die in the control group and 15/100 patients die in the 
intervention group the RRR = (0.2 – 0.15) / 0.2 = 0.25 (i.e. 25%) 
 
The absolute risk reduction (ARR) is simply the difference between the intervention 
and control groups in the proportion of patients with the outcome. 
 
So in the same example the ARR = 0.2 – 0.15 = 0.05 (i.e. 5%) 
 
At a very simplistic level, reporting the RRR makes the treatment sound more 
impressive than reporting the ARR. 
 
Both measures have their uses, but the ARR may be more useful for decision-making 
in the individual patient, particularly if it is used to calculate the number needed to 
treat (NNT). 
 
The NNT is the number of patients who would need to receive the treatment to avoid 
one negative outcome, such as death. It is calculated as 1 / ARR. 
 
So in the example above the NNT = 1/0.05 = 20. We would need to treat 20 patients 
to avoid one death. 
 
 



MODULE 4. EVALUATION OF SERVICE ORGANISATION AND 
DELIVERY 
 
Emergency physicians should use scientific evidence to decide how to organise 
emergency services. Triage, staffing changes, educational interventions and short stay 
facilities are examples of organisational interventions that require robust evaluation. 
Applying rigorous research methods is challenging, but this should not be used as an 
excuse for basing organisational decisions upon hunches or anecdote, rather than 
scientific evidence. 
 
Randomised methods 
The advantages of randomisation also apply to evaluations of service organisation and 
delivery. If patients, carers or researchers can select which service the patients receive 
in a comparison of two services, then the findings are very likely to be subject to bias. 
Randomising patients to the service they receive provides powerful protection against 
bias. However, it is often impossible to provide two services simultaneously to allow 
individual patients to be randomised to one or the other. 
 
In these circumstances cluster randomisation may be used. Instead of randomising 
individual patients, groups of patients are randomised by, for example, randomising 
periods of time (such as days of the week), members of staff, or whole hospitals. 
 
Cluster randomisation has some disadvantages compared to randomisation of 
individual patients: 

1. Allocation concealment is not usually possible. Patients, carers and researcher 
know which service is being used when patients are asked to participate in the 
trial. They can therefore subvert randomisation by choosing not to participate 
in the study if the service they want is not being provided. However, this is 
often not a problem in emergency care because people are unlikely to be able 
to choose when and where they have their emergency.  

2. Standard statistical tests are not appropriate. Analysis requires specialist 
statistical tests to take clustering into account. Also, statistical power may be 
substantially reduced. 

 
Non-randomised methods 
These offer a much simpler way of comparing services. Two different services may 
be compared as they run contemporaneously in two different hospitals. Alternatively, 
a new service may be compared to the previous service (historical controls). The latter 
option is very commonly used. 
 
Although simple, these methods carry a high risk of bias. Contemporaneous 
comparisons will be biased if there are baseline differences in the type of patients who 
use the two different services. Historical comparisons will be biased by changes in 
service delivery occurring over time. 
 
One potential solution to these shortcomings is to use both contemporaneous and 
historical controls when a new service is introduced. The contemporaneous 
comparison allows control for changes over time, while the historical comparisons 
allows control for baseline differences between patients using the two services. 
 



The Hawthorne Effect 
Studies that simply measure outcomes before and after an intervention, and then 
conclude that intervention caused the change in outcome may be subject to 
confounding by the Hawthorne Effect. Based on experiments undertaken at the 
Hawthorne works of the Western Electric Company in Chicago, this describes the 
observation that people change their behaviour when they think that you are watching 
them. Therefore any intervention, if subsequently monitored, will produce a 
recordable change in processes or outcomes, which is lost when monitoring ceases. 
The obvious solution, blinding staff and patients to the evaluation, is difficult to 
achieve. 
 
Sustainability 
Changes in service organisation and delivery need to be sustainable. During the 
period of evaluation it may be possible to provide a service for short period of time in 
a way that may not be sustainable in the long term. When appraising an evaluation of 
a change in service organisation it is worth examining what additional resources 
where required, what staffing arrangements were needed and what knock-on effects 
the change in organisation could have on other services. 
 
Generalisability 
It is particularly important to examine whether findings from service evaluation can 
be generalised between settings. Service delivery is very dependent upon the setting, 
staffing, patients and facilities. New services are often developed by enthusiasts who, 
by their very nature, may be very different individuals or work in a very different 
environment from those who will have to implement the new service elsewhere. 
 



MODULE 5. EVALUATION OF A DIAGNOSTIC TEST 
 
The reference standard (gold standard) 
The reference standard is the criterion by which it is decided that the patient has, or 
does not have, the disease. Typical reference standards might be: 

• A single diagnostic test that is known to be very accurate, e.g. contrast 
demography for deep vein thrombosis 

• A combination of diagnostic tests that used appropriately will reliably rule-in 
and rule-out disease, e.g. VQ scanning for pulmonary embolus combined with 
pulmonary angiographies in equivocal cases 

• Diagnostic testing with follow-up for negative cases to identify cases of 
disease that may have initially been misclassified as disease negative 

 
An ideal reference standard should correctly classify patients with and without 
disease. However, it should also be safe and simple to apply, because it would be 
unethical to ask patients to undergo dangerous or complex testing purely for research 
purposes. If an ideal reference standard does exist, then there is little need to evaluate 
new diagnostic tests! So we have something of a catch-22 situation. This is why 
judging whether a reference standard is acceptable involve weighing its’ potential 
accuracy against the feasibility of any alternative approaches. 
 
Independence of the reference standard 
The same reference standard should be applied to all patients, regardless of the results 
of the diagnostic test under evaluation. If the same reference standard cannot be 
applied to all patients then the diagnostic test under evaluation should not determine 
which reference standard is applied. 
 
Two situations commonly occur in which lack of an independent reference standard 
leads to bias: 

1. The diagnostic test under evaluation determines which reverence standard is 
used. For example, in an evaluation of Wells clinical score for pulmonary 
embolus patients with a high clinical score might receive a reference standard 
of CT pulmonary angiography while those with a low clinical score receive a 
reference standard of D-dimer testing. This is known as work-up bias. 

2. The diagnostic test under evaluation forms part of the reference standard. For 
example, an evaluation of cardiac markers for diagnosing myocardial 
infarction will typically use a reference standard that include a cardiac marker 
result in the definition of myocardial infarction. This is known as 
incorporation bias. 

 
Blinding 
The person measuring or interpreting the diagnostic test under evaluation should be 
blinded to the results of the reference standard. If not they may be influenced in their 
measurement or interpretation by their knowledge of the reference standard result. 
 
Likewise, the person measuring or interpreting the reference standard should be 
blinded to the results of the diagnostic test under evaluation. 
 



Patient spectrum 
The study population should be representative of the population who would receive 
the test in routine practice. If the population is highly selected then this will bias 
estimates of sensitivity and specificity. 
 
The disease prevalence provides a useful clue as to the degree of patient selection. A 
population with high prevalence are probably highly selected. However, it is often 
very difficult to achieve a low prevalence population. The research process typically 
involves asking patients to undergo multiple tests. Clinicians are reluctant to enrol and 
patients are reluctant to participate if there is a low probability of their having the 
disease. 
 
Some diagnostic test evaluations assemble the study population by selecting patients 
on the basis of their reference standard test, i.e. selecting a group of patients with the 
disease and a group without. This method is very prone to bias and over-estimation of 
sensitivity and specificity. 
 
Interobserver error (reliability) 
A diagnostic test or clinical finding is described as being unreliable if it gives 
different results when used by different clinicians. For example, if two radiologists 
frequently produce conflicting reports from the same CT scan, then CT scanning (in 
this circumstance) is an unreliable test. 
 
Evaluations of diagnostic tests should include some assessment of reliability, but they 
seldom do. Reliability cannot be estimated by simply measuring the percentage 
agreement between two observers because agreement may occur simply by chance. 
For example, if a test has only two possible results (positive and negative) then there 
is a 50% probability that two observers will agree in their interpretation purely by 
chance. 
 
The most common method for estimating reliability is to measure the Kappa score. 
This calculates the agreement between observers beyond that expected due to chance. 
Values range from 0 (chance agreement only) to 1 (perfect agreement). 
 
Terms used in reporting diagnostic test data 
The following terms are often used to report diagnostic test data. It is well worth 
being absolutely sure that you know exactly what they mean. Specificity, in 
particular, is often confused with positive predictive value. 
 
Case positive 
An individual with the disease in question, i.e. the gold standard is positive. 
 
Case negative 
An individual without the disease in question, i.e. the gold standard is negative. 
 
Test positive 
An individual with a positive result for the diagnostic test under investigation. 
 
Test negative 
An individual with a negative result for the diagnostic test under investigation. 



 
Prevalence 
The proportion of the population with the condition of interest. 
 
True positives 
Patients correctly identified by the diagnostic test as having the disease. 
 
True negatives 
Patients correctly identified by the diagnostic test as not having the disease. 
 
False positives 
Patients without the disease who are incorrectly labelled by the diagnostic test as 
having the disease. 
 
False negatives 
Patients with the disease who are incorrectly labelled by the diagnostic test as not 
having the disease. 
 
Sensitivity 
The proportion of patients with the disease who are correctly identified by the test. 
 
Specificity 
The proportion of patients without the disease who are correctly identified by the test. 
 
Positive Predictive Value (PPV) 
The proportion of patients with a positive test who genuinely have the disease. 
 
Negative Predictive Value (NPV) 
The proportion of patients with a negative test who genuinely do not have the disease. 
 
How are the terms used? 
Different terms have different implications for the diagnostic value of a test. 
 
Sensitivity is important if a negative test result is being used to rule out a disease- 
Sensitivity + Negative + Out = SnNOut 
 
Specificity is important if a positive test result is being used to rule a disease in-  
Specificity + Positive + In = SpPIn 
 
This table can help you to understand the relationship between prevalence and the test 
parameters. It will not help you to remember what sensitivity and specificity are. It 
could positively confuse you if you get it the wrong way round! 
 
 Case positive Case negative 
Test positive A B 
Test negative C D 
 
Sensitivity = a / (a+c) 
Specificity = d / (b+d) 
PPV = a / (a+b) 



NPV = d / (c+d) 
Prevalence = (a+c) / (a+b+c+d) 
 
If prevalence increases, a and c will increase, while b and d decrease. So both the 
numerator and the denominator for sensitivity will increase, and both the numerator 
and the denominator for specificity will decrease. Therefore, sensitivity and 
specificity remain constant. However, the numerator for PPV will increase, while the 
denominator remains (roughly) constant, so PPV increases as prevalence increases. 
Whereas the numerator for NPV will decrease, while the denominator remains 
(roughly) constant, so NPV decreases as prevalence increases. 
 
Sensitivity and specificity are constant when the prevalence varies 
PPV increases with increasing prevalence 
NPV decreases with increasing prevalence 
 
Typically in emergency medicine we are using diagnostic tests to rule out diseases 
that have a low prevalence, e.g. MI or PE in chest pain, fractures in ankle injury, SAH 
in headache. Hence NPV may appear superficially impressive, while PPV appears 
superficially poor. 
 
Although sensitivity and specificity are mathematically constant as prevalence varies, 
they may have different values if the test is used in a different population. If 
prevalence is observed to vary between populations of interest, it is worth asking 
whether the populations are sufficiently similar to allow extrapolation of results from 
one population to another. 
 
For example, sensitivity and specificity should remain constant, whether tested in a 
CCU population of chest pain patients who have a prevalence of MI of 30%, or tested 
in an emergency department population of chest pain patients who have a prevalence 
of 5%. However, these two populations may be so different that the test actually 
performs completely differently. 
 
Likelihood ratios 
Likelihood ratios provide a more useful was of presenting diagnostic data and can be 
applied to individual patients in a way that sensitivity and specificity cannot. A 
likelihood ratio: 

• Applies to a piece of diagnostic information, such as an observation, a clinical 
finding or a test result 

• Tells you how useful that piece of information is when you are trying to make 
a diagnosis 

• Is a number between zero and infinity 
• If greater than one, indicates that the information increases the likelihood of 

the suspected diagnosis 
• If less than one, indicates that the information decreases the likelihood of the 

suspected diagnosis 
 
The table below shows how likelihood ratios indicate the value of a piece of 
diagnostic information. 
 



Likelihood ratio Value of additional information 
1 None at all 
0.5 to 2 Little clinical significance 
2 to 5 Moderately increases likelihood of disease. Useful additional 

information, but not diagnostic.  
0.2 to 0.5 Moderately decreases likelihood of disease. Useful additional 

information, but not rule-out.  
5 to 10 Markedly increases likelihood of disease. May be diagnostic if 

other information is supportive. 
0.1 to 0.2 Markedly decreases likelihood of disease. May rule-out if other 

information is supportive. 
Over 10 Diagnostic. If this does not convince you that the patient has the 

disease then you probably shouldn’t have done the test. 
Less than 0.1 Rules out disease. 
 
Studies evaluating diagnostic tests should present their results as likelihood ratios. If 
they do not, likelihood ratios for a simple dichotomous (positive or negative) test can 
be calculated from sensitivity and specificity as follows: 
 
Likelihood ratio of positive test = sensitivity / (1-specificity) 
 
Likelihood ratio of negative test = (1-sensitivity) / specificity 
 



MODULE 6. SYSTEMATIC REVIEWS 
 
What is a systematic review? 
A systematic review is a scientific study. It follows the IMRD approach (introduction, 
methods, results, and discussion). The conclusion should represent an unbiased 
synthesis of available data relating to a specific question. It may not be very 
entertaining to read but, if undertaken properly, will provide and objective answer 
based upon the best scientific evidence. 
 
A narrative review is not a scientific study. The authors present their opinions of a 
particular topic with reference to primary studies they have selected. A good narrative 
review should be interesting, entertaining or provocative, but it should not be 
considered to provide scientific evidence. 
 
Systematic review Narrative review 
Focussed question Broad question 
Methodology described No methodology described 
Systematic and comprehensive literature 
search 

Based on authors collected papers 

Primary studies selected according to 
defined criteria 

Primary studies selected at authors 
discretion 

Quality of primary data assessed 
objectively according to predefined 
criteria 

Quality of primary data assessed 
subjectively according to authors opinion 

Synthesis of primary data may be 
attempted using statistical techniques 

No formal statistical synthesis of primary 
data 

Potential bias in selection of primary data 
may be assessed 

Potential bias not considered 

Conclusions result from a scientific study 
of the available data 

Conclusions represent the authors 
opinions 

 
Stages of a systematic review 
Data collection for a systematic review involves three stages: 

1) Literature searching and retrieval 
2) Selection of appropriate papers 
3) Quality assessment of selected papers 

These three steps should each ideally be carried out by two independent assessors 
who are blind to each other’s decisions. The review should report the total number of 
articles identified by the search, the number selected after scanning titles/abstracts, the 
number selected after assessment of the full article, and the number included in the 
review. 
 
Literature searching 
An inadequate literature search may miss important articles. A literature search may 
include: 

• Electronic databases: Medline, Embase, Cinahl, Cochrane database etc. 
• Hand search of journals 
• Grey literature: reports (government or academic), conference proceedings, 

internet, libraries, professional societies, Kings Fund, Nuffield etc. 
• Research registers: National Research Register, HTA database, Cochrane 



• Retrieved articles: bibliographies, search authors names, citation threads 
• Contact with researchers or “experts” 
• Pharmaceutical industry 

 
Publication bias 
Publication bias occurs when the results of a study influence the likelihood that it will 
be written-up, submitted for publication or published, and thus the likelihood that it 
will be included in a systematic review. Positive studies (i.e. trials reporting s 
significant effect or diagnostic studies reporting high sensitivity/specificity) are more 
likely to be written-up, submitted and published, so are more likely to be included in a 
systematic review. This may lead to an over-estimate of treatment effect or diagnostic 
accuracy. 
 
Publication bias can be minimised by undertaking a comprehensive search, but the 
possibility of publication bias can never be completely eliminated. Techniques such as 
the funnel plot can be used to search for publication bias, but these are often 
insensitive. Prospective registration of trials may offer the best solution to publication 
bias in the future. 
 
Selection of retrieved articles for analysis 
Literature searches will retrieve large numbers of articles, most of which are 
irrelevant. A systematic review must therefore define the method by which retrieved 
articles are selected for inclusion. This should be directly related to the research 
question. Often the inclusion criteria will relate to the “PICO” of the research 
question- the defined patients or population, the intervention, the comparison, or the 
outcome of interest.  
 
The following criteria are sometimes used to exclude studies. They usually reflect 
convenience to the authors and their application may cause bias. 

1) Small studies 
2) English language only 
3) Mainstream journals only 
4) Insufficient data presented 
5) Data presented in a form incompatible with planned analysis 
6) Year of publication 

 
Assessment of study quality 
Ideally, all studies selected for inclusion should be assessed for quality. This will 
allow the authors to determine the overall quality of the available data and to explore 
the impact of excluding poor quality studies. 
 
Quality assessment should be objective and based upon criteria that are known to 
influence study quality. The only factors proven to impair quality in trials are the use 
of historical controls, lack of blinding, inadequate follow-up, and failure to use 
intention-to-treat analysis. These factors are combined in a commonly used quality 
score, the Jadad score. 
 
Heterogeneity 
Studies of a similar intervention, using similar methodology, in a similar environment 
should give similar results. The only differences between results will be due to 



random error. Heterogeneity is the term used to describe the amount of variation in 
the results of trials included in a systematic review. 
 
The usual assumption behind a systematic review is that included studies are 
measuring the same result. This is particularly important if there is to be any attempt 
to combine results (meta-analysis). If there is substantial heterogeneity between 
results then studies may not be measuring the same thing and any conclusions based 
on assumptions of a common effect will be suspect. 
 
It is therefore important to assess results for heterogeneity of effect. This can be done 
in several ways. 
1. The Forrest Plot: Results of a systematic review are usually presented as a Forrest 

Plot. Individual study results, with 95% confidence intervals, are plotted alongside 
each other. Simply observing the overlap of confidence intervals gives a crude 
estimate of heterogeneity. 

2. Statistical tests of heterogeneity: Various statistical methods can test the null 
hypothesis that all the studies come from the same population and are estimates of 
the same value. If the test is statistically significant this gives good evidence that 
studies are heterogeneous. However, a non-significant test does not rule-out 
potentially important heterogeneity. 

 
Meta-analysis 
This is the synthesis of data from various sources to provide an estimate of common 
effect. Meta-analysis should not consist of simply adding results together or 
calculating a mean effect. This does not take into account the size or variance of each 
individual study. Although meta-analysis software is available free on the internet, the 
involvement of someone with statistical expertise is usually required. 
 
Meta-analysis assumes that all the individual studies are estimates of the same value. 
Combining results provides a more precise estimate and reduces the chances of a type 
II (false negative) statistical error (i.e. missing a potentially important treatment 
effect). This is the principal value of meta-analysis. It does not overcome bias in the 
original data. Combining biased data (such as the results of historically controlled 
trials) will just give a precise, but inaccurate, estimate. 
 
Clearly meta-analysis is much more controversial if there is any evidence of 
heterogeneity of effect. Combining the results of fundamentally different studies 
simply does not make sense. Clinicians may feel intimidated by fancy statistical tests 
and discussion of “fixed effects” and “random effects” models. However, clinicians 
are often well placed to comment on heterogeneity and inappropriate combination of 
results.  
 
Rather than trying to decipher the stats, have a look at the studies that have been 
combined. What were the patient inclusion/exclusion criteria? What was the setting? 
What exactly was the intervention? What was the control? Meta-analysis is 
sometimes described as the statistical equivalent of combining apples and oranges. 
However, it may become apparent that the statisticians, for all their fancy tests, are 
not just trying to combine apples and oranges. They are trying to combine apples, 
oranges, potatoes and cabbages, with the odd sock thrown in as well. 
 



 


