Home Help Search Archive Feedback **Table of Contents** | Author | Keyword(s) | | |------------|------------|--| | Vol | Page | | | [Advanced] | Search | | Return to article | Parametric
test | Example of equivalent non-parametric test | Purpose of test | Example | |--|--|--|---| | Two sample (unpaired) <i>t</i> test | Mann-
Whitney U
test | Compares two independent samples drawn from the same population | To compare girls' heights with boys' heights | | One sample (paired) <i>t</i> test | Wilcoxon
matched
pairs test | Compares two sets of observations on a single sample | To compare weight of infants before and after a feed | | One way analysis of variance (<i>F</i> test) using total sum of squares | • | Effectively, a generalisation of the paired <i>t</i> or Wilcoxon matched pairs test where three or more sets of observations are made on a single sample | To determine whether
plasma glucose level is
higher one hour, two
hours, or three hours afte
a meal | | Two way analysis of variance | • | As above, but tests the influence (and interaction) of two different covariates | In the above example, to
determine if the results
differ in male and female
subjects | | x^2 test | Fisher's exact test | Tests the null hypothesis that
the distribution of a
discontinuous variable is the
same in two (or more)
independent samples | acceptance into medical | | Product moment correlation coefficient (Pearson's r) | rank
correlation
coefficient | Assesses the strength of the straight line association between two continuous variables. | To assess whether and to
what extent plasma HbA
concentration is related to
plasma triglyceride
concentration in diabetic
patients | | Regression
by least
squares
method | Non-
parametric
regression
(various
tests) | Describes the numerical relation between two quantitative variables, allowing one value to be predicted from the other | To see how peak expiratory flow rate varie with height | Multiple Nonregression by parametric relation between a least squares regression method (various tests) Describes the numerical dependent variable and several predictor variables (covariates) To determine whether and to what extent a person's age, body fat, and sodium intake determine their blood pressure ## Return to article © 2006 BMJ Publishing Group Ltd