Statistics

Sample size

$$n \sim \frac{2(z1 - \alpha/2 + z1 - \beta)^2 \sigma^2}{\Delta^2}$$

- n is the sample size
- α is the significance level often set at 0.05 so we accept a 5% chance of making a type I error
- $1-\beta$ is the power often set at 0.8 so we accept an 80% chance of avoiding a type II error
- Δ is the effect size
- σ is the variance within the population

Type I error – states there is a difference when no difference is found (usually set at 0.05 – therefore 5% chance of type I error)

Type II error – states no difference when there is a difference (power $(1-\beta)$ set at 80-90% therefore 10-20% chance of type II error)

		Disease			
		+ve	-ve		
Test	+ve	а	b	a + b	PPV
					a/a+b
	-ve	с	d	c + d	NPV
					d/c+d
		a + c	b + d	a+b+c+d	
		Sensitivity	Specificity		Accuracy
		a/a+c	d/b+d		a + d/a + b + c + d
		SNOUT	SPIN		

+ve $LR = sens/1$ -spec	High is better:	>2 good, >20 great
-ve $LR = 1$ -sens/spec	Lower is better:	<0.5 good, <0.05 great

ROC (receiver operator curves)

Graphical display of how good a diagnostic test is Relationship between sens & 1-spec at different threshold values Area under curve - %age of times you get it correct

ANOVA – analysis of variance (regression methods & looking at areas under curve)

Correlation – conceptually used when interested in the closeness of the relationship between two variables

Regression – establish cause and effect