STATISTICS AND DEFINITIONS

Mean – mathematical averageMedian – midpoint of rangeMode – most frequent value in the range

Above are the same in normal distribution.

Variance – describes the dispersion of the measures in a given population.

Standard Deviation – the square root of the variance, another measure of dispersion.

Standard error of the mean – inversely proportional to the square root of the sample size, i.e. gets smaller as the sample gets bigger. Used to compute Cl's.

Parametric Tests – data is from a normal distribution, e.g. t test and Pearson's r. More powerful than non-parametric.

Non-parametric Tests – data is from any distribution, e.g. X2, Mann-Whitney U-test, Spearmman's rank co-efficient.

	GOLD STD POS	GOLD STD NEG
INDEX TEST POSITIVE	A (TRUE POSITIVE)	B (FALSE POSITIVE)
INDEX TEST NEGATIVE	C (FALSE NEGATIVE)	D (TRUE NEGATIVE)

Sensitivity - % of people **with** the disease who are test <u>positive</u>. True positive rate. How good your test is at finding the disease. **A/A+C. SNOUT** – A <u>negative</u> result of a sensitive test rules the disease **out**.

Negative predictive value - % with a negative test who do not have the disease. Post-test probability of a negative test. D/C+D. Rule out test. Good if prevalence of disease is low.

Specificity - % of people **without** the disease who are test <u>negative</u>, or how well the test detects the absence of the disease.

True negative rate. How good your test is at excluding the disease. **D/D+B. Spin –** a <u>positive</u> result of a specific test rules the disease **in.**

Positive predictive value - % with a positive test who have the disease. Chance that a positive test result % will be right. Post-test probability of a positive test. **A/A +B.** Rule **in** test. Good if prevalence of a disease is high.

100% sensitive = 100% NPV.

Pre-test probability. Prevalence of disease in given population.

Likelihood ratio – How the result of a test changes the pre-test probability, or how much more or less likely the diagnosis after testing.

"Likelihood that a given test result would be expected in a patient <u>with</u> the target disease compared to the likelihood of the same result in a patient without."

Post-test odds – Pre-test odds x likelihood ratio.

Positive likelihood ratio – How much more likely you are to have a <u>positive</u> test result if you <u>have</u> the disease than if you <u>do not</u>, (sensitivity/1-specificity)(>2.0 good).

Negative likelihood ratio – How much more likely you are to have a <u>negative</u> test result if you <u>do not</u> have the disease than if you <u>do</u>. (1-sensitivity/specificity). Neg LR zero = sensitivity 100% (<0.5 good).

THEREFORE!!

Low risk and negative sensitive test = very low risk.

Type 1 error – To say there <u>is</u> a difference when there <u>isn't</u> (Null hypothesis true, but reject it). α (alpha) – the type 1 error rate, usually 5%, p=0.05.

Type 2 error – To say there <u>isn't</u> a difference when there <u>is</u>. (fail to reject null hypothesis). β (beta) – the type 2 error rate, usually 10 - 20%.

Power – 1- β . Takes into account the CI you are willing to accept.

Confidence interval – A measure of the precision of your result compared to the population as a whole. 95% C1 = 1:20 chance that population (or true) value lies outside of your result.

Odds ratio – A way of expressing the good that treatment, or harm that exposure, might cause.

odds in treated or exposed group odds in control group

OR > 1 = harm for exposure 2 = good for treatment

Internal validity – acceptable level of bias in the study.

External validity – generalization of the result.

Receiver operator characteristic (ROC) curve – graphical display of how good a diagnostic test is. x axis is 1-specificity, y axis is sensitivity. Area under the curve is the % of time you get it correct.

P value (0.05) Probability.

If there is truly no difference between these results, we would only find this result (or wore) on <5y.

(?Odds ratio) % disease in treated e.g. NTD 3.3% Relative Risk % disease in control 7.8% = 0.42

Diagnostic odds ratio = true/false = (a * d)/(b * c)

Relative risk reduction – Proportion reduction in disease between the treated and the untreated groups.

<u>expected disease – observed disease</u> expected disease

Absolute risk reduction - % expected - % observed (or) (expected <u>- o</u>bserved?)

Number needed to treat – Number of patients that intervention needs to be given to so 1 life is saved or 1 outcome achieved.

absolute risk reduction %

e.g. 20% mortality in control group, 15% mortality in treated group.

RRR =
$$\frac{20-15}{20}$$
 = 0.25, (25%)

$$ARR = \underline{20-15} = 0.05, (5\%)$$

$$100$$

$$RRR = 20.0 = 1$$

Therefore only if 100% & ARR 1.0, is

NNT = 1

NNT = 5

Kappa – measure of agreement beyond chance Good > 0.7

"chance – corrected" agreement.

Valid measurements \to do they measure what they are supposed to **Reliable measurements** \to are they reproducible.

Sensitivity Analysis \rightarrow In meta analysis, results of all studies, then only PRCT's etc.